Author: anutio

  • AI Decides Who Gets an Interview: What You Need to Know

    AI Decides Who Gets an Interview: What You Need to Know

    If you’re a job-seeker who’s ever been ghosted after applying, or a hiring manager drowning in hundreds of resumes, you’ve probably felt the same mix of frustration and curiosity: How did they decide who I’d never hear from? The short answer is: increasingly, it isn’t a human at all.

    AI systems, from resume parsers to full interview bots, are quietly trimming applicant pools before a human ever reads a CV. That sounds efficient, but it also raises a raft of questions about fairness, transparency, and bias.

    In this article, you’ll learn what these AI tools do, where they can go wrong, and quick tactical moves you can take today. If you want the TL;DR: know what the tools look for, keep things human where it counts, and insist on transparency (here’s why).

    AI isn’t just a tool, sometimes it is the gatekeeper

    Companies are using AI at multiple stages of hiring: parsing resumes through applicant-tracking systems, ranking candidates with scoring models, scheduling and transcribing interviews, and even running automated video interviews where the candidate talks to a system rather than a human. For some employers and platforms, that automation now extends to recommending or deciding who should get an interview (real-world rollouts).

    That scale can be a blessing. It saves hours for recruiters and quickly identifies candidates who match hard requirements, but the tradeoffs are real. Algorithms learn from historical hiring data, and if that data reflects bias (gendered job histories, networked hires concentrated in certain zip codes, or language differences), the AI can reproduce or amplify those patterns (research on algorithmic fairness). The academic and industry work on bias shows this isn’t an “edge” problem; it’s central to how these systems behave (The Guardian’s coverage).

    When AI sits between you and the recruiter, two things happen simultaneously, the hiring funnel becomes much more efficient, and much less transparent. That lack of transparency is why laws and rules are catching up, and why you need to know how these systems see your application.

    How AI screens resumes, the mechanics (and where humans trip up)

    Here’s how a typical AI resume-screening flow works, step by step, and the realistic ways it can filter you out before a human ever glances at your CV.

    a. Parsing and normalizing
    Applicant Tracking Systems (ATS) and resume parsers ingest your file and break it into fields: name, contact info, job titles, dates, skills, education. These systems are picky about format, odd fonts, images, tables, or PDFs that aren’t text-layered can cause fields to be misread or dropped. If your headline is an image or your skills are jammed in a footer, the parser might never see them (ATS parsing tips).

    b. Keyword and skill matching (but smarter)
    Old ATS was dumb keyword matching. Modern systems use semantic search, which understands that “content strategy” ≈ “editorial planning.” That’s helpful but it also means your resume needs to signal relevant concepts, not just hope a hiring manager infers them. If your resume doesn’t explicitly connect your experience to the role’s required competencies (in plain, scannable language), the model may under-score you (resume writing for AI).

    c. Scoring and ranking
    After parsing, candidates get ranked by models using historical hire data, inferred fit scores, and sometimes engagement metrics. These scores can bake in bias if past hiring favored a specific profile, which is why researchers keep flagging algorithmic bias as a major risk in employment AI. That’s also why some jurisdictions now demand notice and guardrails when employers use these systems.

    d. The invisible filters
    There are other, sneakier things that trip applicants: geographic proxies, graduation dates used to infer age, language models preferring certain phrasing styles, and even resume lengths or formatting that bias the parser (hidden biases in hiring AI). Employers and vendors sometimes exclude these signals, but not always and when they don’t, the result is an invisible, systemic filter (privacy and bias study).

    Quick candidate fixes (do these today):

    • Use a simple, text-first resume — avoid headers/footers and images; submit plain PDF or DOCX with clear section headings (ATS formatting guide).
    • Mirror the job language — use the exact phrases from the job description for key skills (but don’t stuff keywords). Semantic matching helps, but explicit signals still matter (resume language advice).
    • Add a short skills section — a scannable bulleted list right after your summary increases the chance parsers pick up your competencies (resume optimization tips).

    AI-Led Interviews — when the computer does more than screen

    Ever felt surprised when your “interviewer” didn’t blink back? That’s because AI is stepping into the interviewer’s chair. Companies now use automated one-way video systems where you record answers and the AI analyzes everything, from your tone to your facial expressions. Time just published that 96% of U.S. hiring pros use AI for screening, with 94% thinking it helps identify strong candidates but people report feeling dehumanized or blindsided when they realize they’re talking to a bot.

    In tech circles, things are getting weirder: Meta is even testing letting candidates use AI assistants during interviews, more like coding with AI instead of being evaluated by AI.

    Risks & Bias in AI Interviews

    Experiments by NYU’s Hilke Schellmann found AI interview systems occasionally judge candidates on tone, not content, resulting in inconsistent, biased outcomes (The Guardian). An Australian study found systems struggle with accents, non-native English speakers get choked out by higher transcription errors, up to 22%, compared to less than 10% for U.S. natives (The Guardian’s Australia coverage, News.com.au).

    That mismatch feels unfair and it’s not just anecdotal. Without transparency, candidates can’t even ask why they weren’t selected (News.com.au, The Guardian).

    Regulation & overseers

    Ontario sets the pace

    Ontario is taking tangible steps to bring AI hiring tools into the light. With the Working for Workers Four Act, 2024 (Bill 149), the province will soon require employers (with 25+ employees) to disclose when AI is used to screen, assess, or select applicants and that includes publicly posted jobs. This requirement kicks in on January 1, 2026. The law even defines AI broadly, to include everything from keyword filters to predictive ranking systems. (Working for Workers Four Act details, legal breakdown)

    Québec demands explainability, right now

    Québec’s privacy law already has teeth when it comes to automated decisions. If a job decision is made solely by an AI, employers must inform the affected person and provide them, upon request, with the logic and factors behind the decision plus a chance to challenge it or appeal to a human. And if they don’t comply, administrative penalties can follow. (Québec’s automated decision rules, nuanced legal explainer)

    B.C. keeps human rights and privacy central

    In British Columbia, AI hiring platforms must align with the Human Rights Code, which prohibits discrimination based on race, sex, disability, and more and respect PIPA, their privacy law for handling personal data. Employers are advised to maintain active human oversight, transparency around data usage, and periodic bias checks. (B.C. best practices guide)

    Nationwide movement but not law yet

    At the federal level, the proposed Artificial Intelligence and Data Act (AIDA) aimed to regulate high-impact AI systems, including those used in hiring but stalled when Parliament was prorogued in early 2025. Still, the Accessible Canada Act and federal human rights frameworks continue to require fairness and accessibility for disabled applicants across federally regulated sectors. (AIDA status update, Accessibility legislation context)

    What you can do now — smart moves for candidates and employers

    If you’re job-seeking:

    • Know your rights. If you suspect AI is involved, ask proactively, especially in places like Illinois where they have to tell you.
    • Prepare with AI, wisely. The Financial Times warns the “AI arms race” sees candidates using tools to game hiring, a tactic that may backfire.
    • Stand out with clarity. Make sure your language is plain, your strengths explicit, and avoid heavy reliance on nuance that bots might miss.

    If you’re an employer or recruiter:

    • Be transparent. Tell applicants what the system does, get consent, limit video access, and honor deletion requests in places like Illinois (Littler, Barnes & Thornburg LLP, SHRM).
    • Audit for fairness. Follow NYC’s example, annual bias audits build accountability and trust.
    • Keep it human. Use AI to streamline, not replace, early human judgment, especially for roles where trust, empathy, or nuance matter.

    Why this matters and how to make it work

    AI has gone from resume sifting to deciding who actually gets to talk to you. That’s efficient, but dangerous without accountability. From format filters to accent bias, the systems can trip up great humans because they’re trained on imperfect data. But with awareness, legal know-how, and a few strategic tweaks like better transparency or bias audits, AI can stay helpful, not harmful.

  • AI in Recruitment: What Happens to Your Data After You Apply for a Job

    AI in Recruitment: What Happens to Your Data After You Apply for a Job

    You applied for a job, hit submit, and moved on, but did you know your resume, voice sample, video interview, and even your LinkedIn activity could now be living inside one or more AI-powered recruitment systems, being stored, scored, re-used, or even sold behind the scenes? Most job applicants don’t know what happens to their data after they apply, and employers don’t always tell us plainly. In this article, we show you exactly where your data goes, who can see it, what the real risks are (from bias to breaches), and the real, practical steps you can take to protect yourself and demand better from hiring teams.

    Read on if you’ve ever wondered: “Did that company keep my resume? Did an algorithm judge my face? Can I make them delete my data?”

    How does AI actually handle your data in recruitment?

    Where your data comes from. Recruiters and automated systems pull data from a surprising number of places: your uploaded CV, application forms, recorded video interviews, chatbot chats, short-answer assessments, background-check vendors, and publicly available profiles on LinkedIn or social media. Some systems also infer traits from voice cadence or facial expressions in video interviews. If you didn’t read the tiny privacy box before clicking “Apply,” that doesn’t change the fact that these inputs exist and can be processed by AI. For a practical overview of lawful collection and consent in recruitment, see this GDPR guide for recruitment data.

    What the AI does with that data. Once collected, AI systems can do three main things:

    (1) screen & rank candidates by matching resume keywords or inferred traits to a job profile;

    (2) analyse unstructured inputs (video, audio, essays) for signals like sentiment, language use, or facial micro-expressions; and

    (3) route or re-use candidate data — e.g., add you to a talent pool, share details with recruiters or vendors, or feed anonymized data into model retraining.

    These are standard features for many applicant tracking systems and interview-analysis vendors. If an employer relies solely on automated decision-making, GDPR and other rules may require extra safeguards or human review.

    Where the data is stored and who it’s shared with. Candidate data typically lives on cloud servers owned by ATS vendors or video-interview platforms, and sometimes third-party assessment providers. That means multiple parties, the hiring company, the software vendor, background-check services, and possibly external recruiters or data brokers may have access. Some companies explicitly share candidate data with partners for talent marketing or reselling; others don’t make that obvious. The European Data Protection Supervisor (EDPS) advises that applicants must be informed of processing purposes and third-party sharing before the selection begins.

    Transparency gaps and “black box” processing. Many AI hiring tools operate opaquely — they evaluate candidates using proprietary models and vague labels like “cultural fit” or “engagement score.” That’s a problem because you can’t correct, contest, or even fully understand a decision if the model’s rules aren’t disclosed. Regulators are noticing: laws like the GDPR and new local rules require disclosure about automated decision-making and sometimes a human-review backstop. In the U.S., Illinois’ AI Video Interview Act already forces employers to disclose AI use and explain, at a high level, how the system evaluates candidates.

    The real risks: bias, breaches, and loss of control

    Algorithmic bias: the data problem under a different name. AI models aren’t neutral, they learn from past hiring data, and if that history reflects sexism, racism, or other biases, the model often reproduces (or amplifies) those patterns. This effects across different AI hiring tools, for example, Amazon’s scrapped AI recruitment system that penalized resumes containing the word “women’s.” That’s why audits, diverse training data, and removing obvious demographic proxies (like names or photos) matter, but they’re not always implemented. If a model ranks candidates differently because of perceived gender or race from a name, that’s not just unfair, it’s illegal in many jurisdictions.

    Real-world breaches and sloppy security. Efficiency is great, until a vendor misconfigures a server or uses weak access controls. A recent Paradox AI breach exposed millions of job applicants’ records from a major hiring platform used by McDonald’s, showing how vulnerable applicant data can be when security practices are weak. That leak contained names, contact details, and application histories, exactly the kind of data that scammers and unscrupulous firms love.

    Unintended reuse and third-party sharing. Even if your original application was for one role, companies frequently keep candidate data to build talent pools for future openings. Vendors might aggregate anonymized metrics to improve models, but “anonymized” is sometimes reversible. Worse, some data brokers and recruitment marketplaces buy or harvest candidate records and use them for targeted marketing or reselling. If you’re picky about who sees your personal info, this loss of control is a big deal.

    What that actually means for you (in plain terms). Your resume might be used to train a model that will evaluate other applicants; your video could be scanned for facial cues that affect hiring outcomes; your contact info could appear in third-party databases; and, worst case, a breach could expose the data to fraudsters. That’s why transparency, audit logs, and candidate rights (like erasure, access, and human review) are not just legal jargon, they’re practical protections.

    Your Rights & Concrete Actions: Speak Up, Delete, Demand

    You’ve got rights and they’re powerful. Whether you’re in the EU or elsewhere, privacy laws like the GDPR give you legal rights: the right to access what data employers hold (Article 15), the right to erase it (Article 17), and to demand decisions be handled by a person instead of just an algorithm (Article 22). In parts of the U.S., laws like Illinois’ AI Video Interview Act already require disclosure of AI usage and fairness. Knowing these rights means you can push back and hiring teams must respond.

    How to ask in real words. Don’t get stuck on formal legalese. Here’s a simple email script you can customize and send to recruiters or HR:

    Hi [Recruiter Name],
    I’m writing to request access to the personal data you hold on me in your AI recruitment systems, specifically any analysis results, scoring, or video assessments. Please also share details on whether my data has been shared with any third parties, and how long it’s retained. If possible, I’d also like to request deletion of my data from your systems once my application process is complete.
    Thank you for your transparency.
    Best, [Your Name]

    That’s grounded in rights under GDPR Article 15 and Article 17, but friendly and easy to send.

    Checklist — what to ask or look for.

    ActionWhat to check or request
    Ask about automated decisions“Was any AI solely responsible for rejecting or ranking me?” (GDPR Article 22 right)
    Request transparencyAsk “Who sees my data? Third-party vendors? Talent pools? Recruiters?”
    Demand data deletion“Please delete my data after the process ends, I’m using GDPR Article 17 / your state law.”
    Ask for remediationIf you suspect bias, ask for human review or an explanation of “cultural fit” scoring.
    Follow upIf you don’t hear back in 30 days, send a polite reminder citing your legal rights.

    These are practical steps you can take immediately after applying, or at any point afterward.

    When to escalate and who to tell. If the company doesn’t respond or denies your request, escalate it:

    Why this matters to creators like you. If you write about recruitment, or run workshops for jobseekers, these are tools you can teach. Templates, checklists, legal grounding, friendly tone, that’s the kind of practical content that wins trust, clicks, and actually empowers real people.

    You’re in charge

    The AI systems in recruitment are powerful but not omnipotent. This article equips you with knowledge, language, and confidence to say: “Wait, what’s happening with my data? Can you show it to me? Can you delete it? Is a human reviewing my application?” You don’t need to be a lawyer, but you do need to be a data-aware job candidate.

  • How Blind Resume Screening Helps You Hire More Diverse and Qualified Talent

    How Blind Resume Screening Helps You Hire More Diverse and Qualified Talent

    We all say we hire for skill. But far too often, the first filter is a quick skim of a resume couple with unconscious signals (a name, a university, a photo) that decide whether someone even gets to an interview. Classic field experiments show identical resumes with White-sounding names get many more callbacks than those with Black-sounding names. The kind of unfair gap that means companies routinely miss great candidates before they’ve even had a chance.

    That’s where blind resume screening comes in. By removing identifying details and focusing hiring decisions on qualifications, skills, and measurable outcomes, blind screening forces hiring teams to evaluate what actually matters. This is for HR leaders, hiring managers, startup founders, and DEI champions who want a practical path to hire more diverse and qualified talent without reinventing the whole recruiting engine. We’ll show you the evidence, the business case, how to run a pilot, and what to watch out for. For busy teams, consider this your quick playbook.

    Why it matters: the human cost of visible cues

    When resumes carry visible cues like names, photos, age, or school prestige, they don’t just convey information, they trigger stories in the reviewer’s head. Those stories are often biased, fast, and invisible. Decades of research, including the Harvard/NBER callback study, demonstrate that names and other markers meaningfully change hiring outcomes: White-sounding names received substantially more interview requests than identical resumes with minority-sounding names.

    Beyond fairness, the downstream costs pile up: teams get less cognitive diversity, innovation suffers, and the organisation loses credibility with candidates and customers who expect inclusive practices. That’s why blind screening matters, not as a silver bullet, but as a targeted intervention that neutralizes the earliest and one of the most damaging sources of bias in hiring. If you want to see more diverse shortlists and make interview time actually count, anonymizing the pre-interview stage is low-cost and high-impact, as explained in AIHR’s blind hiring guide.

    The business benefits: better hires, better decisions

    Diversity isn’t an HR checkbox, it’s a performance strategy. Multiple large-scale studies, such as McKinsey’s Diversity Wins report, show that companies with stronger gender and ethnic diversity on executive teams are more likely to outperform financially than their less-diverse peers. That means blind screening by widening and diversifying your candidate pool, can feed a pipeline that supports long-term value.

    Concrete benefits you can expect from a well-run blind screening process:

    • More objective shortlists — candidates are compared on evidence (skills, outcomes) rather than proxies (school, name), as outlined by SHRM’s primer on reducing bias in resume reviews.
    • Stronger talent pipelines — when bias at the resume stage is lowered, under-represented candidates reach interviews at higher rates, increasing the chance you’ll hire high-quality diverse talent, as seen in Fast Company’s coverage of blind recruitment adoption.
    • Better employer brand and retention — candidates notice fairer processes; employees stay longer where meritocracy is visible and practiced a reputational plus that feeds hiring success.

    That said, blind screening is not a guaranteed fix on its own. Some recent research, including OECD’s analysis on anonymized CVs, shows mixed results and in a few cases, anonymizing CVs without changing the broader hiring process widened gaps. The win comes when you combine anonymized screening with structured interviews, skills assessments, and data tracking, not as a single fix.

    How it actually works: mechanics & tools

    So how do you get blind screening off the ground without it turning into a logistics nightmare?

    • Step 1: Remove identifying info from resumes — strip names, photos, graduation dates, schools, anything that may hint at age, ethnicity, or gender. Many ATS platforms and tools let you automate this relief. Think of tools like Applied (example of anonymizing platform).
    • Step 2: Build structured evaluation criteria — don’t let reviewers go rogue. Set clear, skills-based benchmarks: “X years of experience in Y”, “evidence of project Z”, “portfolio with A, B, and C.” Make sure evaluators rate against those criteria, not gut feelings.
    • Step 3: Use skills assessments or work samples — put theory to work. Blind screening shines when paired with real-world tests (e.g., code challenges, writing prompts, case tasks), because these highlight actual ability, unmediated by identity.
    • Step 4: Loop in your hiring team early — onboard everyone around why you’re doing this. Provide bias training or quick primers. Explain, “We’re going blind so we can see clearly who’s truly qualified.”

    This approach isn’t a one-off novelty, it’s a replicable model. When organizations layer these elements together, blind hiring becomes not just fairer, but stronger. (FastCompany on structured blind recruitment).

    Addressing challenges and how to counter them

    No strategy is perfect, so let’s talk about the snags you may hit and how to sidestep them.

    • Challenge: other bias creeps in — anonymizing resumes helps, but if your job ads, selection criteria, or interviews remain biased, you’ve only shifted the problem. Mitigate this by auditing job descriptions for exclusionary language (e.g. “dominant”, “ninja”) and calibrating evaluation guides. (SHRM on avoiding biased language in job ads).
    • Challenge: identical anonymity can strain personalization — reviewers sometimes disengage if all candidates “look the same on paper.” Combat this by bringing back context later, like project case studies or culture fit assessments, after initial shortlisting.
    • Challenge: workflow resistance — hiring teams might find the anonymizing step cumbersome. Keep it optional but encourage adoption with pilot projects that demonstrate better shortlist diversity.
    • Challenge: technology isn’t foolproof — some tools still allow leakage (e.g., subtle institutional clues in language or formatting). Always do a manual check alongside automated anonymization. Use random audits to keep it honest.

    Measuring impact & next steps

    You don’t just do blind screening, you measure it, learn, and scale it.

    • Track quantifiable metrics — compare candidate pools before and after blind screening: shortlist diversity, interview-to-offer ratios, candidate performance post-hire, retention rates. Set up dashboards to monitor changes monthly or quarterly.
    • Solicit qualitative feedback — ask interviewers and candidates for input: “Did the process feel fair?” “Could you assess the role based on merit?” These perspectives matter for refining the candidate experience.
    • Iterate wisely — your first pilot may wobble. Use findings to tweak where bias is creeping back in. For instance, if the shortlist is more diverse but the final hires aren’t, maybe your interview questions need revisiting or panel diversity needs boosting.
    • Tell the story — share successes internally: “Thanks to blind screening, our shortlist gender balance improved from 30% to 50%, and ultimately, two hires out of three were from underrepresented groups.” That builds momentum and buy-in.

    Starting small with one department or job level and scaling as you gather wins is both practical and strategic. When you roll this out thoughtfully, blind screening becomes a trusted tool, not just a trendy experiment.

    Final thoughts

    By anonymizing resumes, structuring evaluations, and measuring outcomes, you cut through bias and surface talent that might otherwise go unseen. It’s an intervention worth refining, not just once, but as a central part of how you hire moving forward.

  • The Most Overused Resume Skills and What You Should Look For Instead

    The Most Overused Resume Skills and What You Should Look For Instead

    Writing a resume is already hard enough. But what’s worse? Loading it with all the “right” words and still getting ghosted by recruiters. You know the ones, team player, hardworking, detail-oriented, go-getter. At some point, we’ve all used these terms. And while they might feel safe or familiar, they don’t say much.

    Words like motivated, passionate, and responsible have been used so often that they’ve practically lost all meaning. Recruiters don’t want a walking thesaurus. They want clarity. They want context. And most importantly, they want proof.

    In fact, a Forbes article nailed it: if your resume reads like everyone else’s, you’ll never stand out. This statement is also backed by recruiters who admit they spend less than 7 seconds scanning a CV before deciding if it’s worth a second look.

    Hence, the big question: Which resume skills should you ditch? And what should you write instead to actually get hired?

    What Counts as an Overused Resume Skill Today?

    We’re in the era of AI screeners and fast-paced hiring funnels. That means hiring managers are no longer tolerating fluff words that sound great but say nothing.

    Here’s the test: if you can copy-paste the same phrase into hundreds of resumes and it still works, it’s probably empty.

    Words like:

    • Team player
    • Hardworking
    • Results-oriented
    • Detail-oriented
    • Excellent communication skills

    They’re not measurable. They’re subjective. And worst of all, they’re expected, not impressive.

    In fact, Glassdoor’s resume guide shows that these buzzwords often push your resume to the bottom of the pile. Why? Because they’re telling, not showing. It’s the equivalent of saying “I’m funny” instead of just cracking a great joke.

    If someone writes, “I’m a detail-oriented problem solver.” That sounds good, but what does it actually mean? Did you build a system that reduced errors by 30%? Did you solve a customer complaint that led to a long-term client? That’s the kind of info that makes recruiters pause and take a second look.

    Skills that can’t be backed by a story, stat, or situation are usually just noise.

    So, ditch the fluff and go for impact. The next section will break down the most overused resume phrases (ranked) and what hiring managers really wish you’d say instead.

    Top 10 Resume Skills That Say Nothing (But Sound Nice)

    Let’s talk about the resume phrases that feel smart but end up making your application invisible.

    These are the skill phrases recruiters see over and over again. They’re vague, fluffy, and way too easy to fake. Here’s a quick snapshot of what we mean:

    Overused SkillWhy It’s a Red Flag
    Team playerToo broad. Did you collaborate, lead, or follow?
    Detail-orientedEveryone says it; few give examples of how
    HardworkingExpected, not a competitive edge
    Excellent communication skillsSays nothing about what you communicated or how
    Results-drivenWhere are the results? No numbers = no proof
    Self-starterOkay, but what did you actually initiate or improve?
    Problem solverWhat type of problem? What solution? What outcome?
    PassionatePassion is good, but outcomes are better
    Strategic thinkerShow the strategy and its effect, not just the label
    Go-getterSounds motivational… but not measurable

    You see the pattern?

    What recruiters and hiring managers are actually looking for is evidence. Storytelling and proof-based resumes are becoming the gold standard, especially in competitive industries.

    It’s not about avoiding these words entirely, it’s about replacing them with actions and results that prove you mean business.

    Why Soft Skills Still Matter But Must Be Shown, Not Told

    Soft skills still deeply matter. But soft skills on their own don’t land jobs. Demonstrated soft skills do.

    If you want to say you’re a strong communicator, don’t write “strong communicator.” Instead, say:

    “Led bi-weekly virtual onboarding sessions that improved new employee ramp-up time by 40%.”

    That sentence shows communication in action and even better, it’s tied to a result.

    This is where frameworks like STAR (Situation, Task, Action, Result) or CAR (Challenge, Action, Result) come in. They help you package soft skills in ways that hiring managers can trust. The Muse has a great explainer on using STAR for interviews, and you can easily apply it to resume writing, too.

    Soft skills don’t need to live in the “Skills” section only. The experience section is where they shine best.

    What Employers Really Want: Context, Impact, Results

    Here’s something recruiters won’t always say, but they’re thinking it: “Can this person make my job easier or my team better?”

    They want skills, yes. But what they’re really scanning for is evidence of past value.

    So, instead of just saying:

    “Results-driven marketing executive” (what does that even mean?)

    Say this:

    “Launched a cross-channel ad campaign that increased lead generation by 65% and decreased CPC by 22% in Q2.”

    That sentence gives us:

    • The what (ad campaign)
    • The how (cross-channel)
    • The impact (leads + cost reduction)
    • The when (Q2)

    That’s resume gold. It hits all the right keywords for applicant tracking systems (ATS) and it impresses humans reading it.

    Want a shortcut? Think in this format:

    SkillActionResultTimeframe

    Example:

    “Applied problem-solving skills to redesign our ticketing process, cutting customer wait time by 3 hours per week over 6 months.”

    You’ve just turned “problem-solver” into something a recruiter can visualize and measure.

    The folks at Jobscan actually recommend scanning your resume for vague adjectives and swapping them out for verbs and results wherever possible.

    Underused Skills That Actually Impress Recruiters

    Now that we’ve ripped apart the cliché buzzwords, let’s highlight the good stuff, the underused gems that hiring managers wish more people showed off.

    Here are a few undervalued resume skills (especially in 2025’s job market):

    • Cross-cultural communication: Especially important in global or hybrid teams. If you’ve worked across time zones or supported international clients, flaunt it.
    • Data literacy: You don’t have to be a data analyst, but if you can read reports, analyze trends, or make decisions based on data, say so.
    • Digital adaptability: If you’ve quickly mastered new platforms, tools, or workflows, mention it.
    • Conflict resolution: Handled a tense team moment or solved a client dispute? That’s gold.
    • Remote collaboration tools: Proficiency in Notion, Slack, Trello, or Asana is now a signal that you’re workplace-ready.

    A 2024 report from World Economic Forum shows that employers are increasingly prioritizing analytical thinking, adaptability, and tech familiarity over traditional task execution.

    Bonus tip? Recruiters also love seeing process improvement as a skill, especially if you can say how you made something faster, cheaper, or smoother.

    How AI Tools Are Changing Resume Reviews (and What It Means for Skill Descriptions)

    Hiring is no longer a human-only process. With the rise of Applicant Tracking Systems (ATS) and AI-powered resume screeners, your carefully chosen words might never be seen by a human unless they pass an algorithm first.

    AI tools are not reading for vibes, they’re scanning for relevance, structure, and keywords that match job descriptions. According to Jobscan, keyword stuffing is one of the most common mistakes job seekers make. And ironically, stuffing in overused skills like team player or results-driven just to “beat the bot” actually works against you.

    Here’s how to win instead:

    • Tailor your resume to each job using exact phrases from the job post (but only the ones that apply to your experience).
    • Use measurable achievements to support every soft or hard skill you list.
    • Avoid keyword dumping; Jobscan’s resume optimization tool can help you strike the right balance.

    Also, tools like Rezi and Teal HQ can show you in real time how your resume performs with ATS filters and suggest better phrasing.

    So, in 2025, it’s not just about what you say, it’s how and where you place those words to survive the AI layer and impress the human one.

    Actionable Resume Fixes: Before & After Examples

    It’s one thing to talk theory. It’s another to see the difference. Below are before-and-after examples showing how to transform overused phrases into compelling, quantifiable achievements:

    BeforeAfter
    Team player with strong communication skillsCollaborated with a 6-person team to launch a community podcast, growing listenership by 75%
    Detail-oriented problem solverIdentified data errors in vendor reports, preventing a $15,000 budget discrepancy
    Passionate about customer serviceResolved 120+ customer tickets weekly with a 96% satisfaction rate
    Strong leadership skillsLed a team of 8 to complete a 3-month rebranding project 2 weeks ahead of schedule

    Your bullet points should start with strong verbs, include numbers or results when possible, and end with impact. If you’re stuck, try writing them backward: start with the result, then explain how you got there.

    Your Resume Is a Pitch, Make It Count

    Your resume isn’t just a list of tasks. It’s a 7-second pitch to prove you’re the person for the job.

    Fluff won’t help you. Generic skills won’t save you. What will? Specific stories, results, and context. Whether you’re a recent grad, mid-career, or pivoting industries, your ability to show, not just say, your value is what sets you apart.

    So go back, audit your resume. Swap out every empty adjective. Replace buzzwords with real results. Use tools like Jobscan, Teal, or even Canva’s resume builder to help you stand out.

    And if you want an expert eye, Anutio offers resume review and career clarity services that can save you hours of trial-and-error. Because in 2025, your words need to work as hard as you do.

    You can also upload your resume on our Career Map to pick out missing and transferrable skills.

  • How to Showcase Soft Skills on Your Resume (Without Sounding Generic)

    How to Showcase Soft Skills on Your Resume (Without Sounding Generic)

    Anyone can say they’re “a great team player” or “have strong communication skills” on a resume. But those phrases are so overused they’ve lost all meaning. You sound just like everyone else in the pile, and that’s a problem.

    Hiring managers today are tired of buzzwords. They want proof. And with automation and AI taking over many technical tasks, what actually makes you stand out is the human stuff, how well you lead, adapt, communicate, and collaborate.

    According to the 2024 LinkedIn Global Talent Trends report, 92% of hiring professionals say soft skills are just as important or more important than hard skills. Companies aren’t just hiring based on what you know; they’re hiring based on how you think, how you show up in teams, and how you handle change.

    Even McKinsey found in their Future of Work report that interpersonal and leadership skills are now critical across almost every industry. Whether you’re applying for a client-facing role, managing remote teams, or pivoting to a brand-new field, you need to show you’ve got what it takes, not just say it.

    So let’s get into how to do that without sounding like a walking LinkedIn cliché.

    The Soft Skills Employers Are Really Looking For (and Why)

    Before you start editing your resume, you’ve got to know which soft skills actually matter to the role you’re aiming for.

    A good place to start is this Indeed guide on soft skills, which breaks down top picks by job category. But to save you the scroll, here are five of the most in-demand soft skills across industries today and why employers care so much about them:

    1. Communication

    Whether you’re writing emails, pitching ideas, or collaborating cross-functionally, communication isn’t optional. But don’t just say you’re “a good communicator”, show it with results. Something like, “Led a weekly team meeting that improved project visibility by 40%” hits different. Harvard Business Review actually did a deep dive on how communication styles impact leadership.

    2. Emotional Intelligence (EQ)

    Especially in remote or hybrid work, EQ is essential. Can you read the room even when it’s on Zoom? Can you handle feedback without taking it personally? According to World Economic Forum’s Future of Jobs Report, emotional intelligence is climbing the priority list for employers across industries.

    3. Critical Thinking & Problem Solving

    Forget the “I think outside the box” line. What employers want is someone who can assess situations, propose solutions, and course-correct quickly. Show this with a line like: “Redesigned an inefficient workflow, reducing delivery time by 25%.” For tech and business roles, this one’s non-negotiable and LinkedIn Learning even has whole modules dedicated to it.

    4. Adaptability

    We’re not in the era of static job roles anymore. Everything changes fast—tools, teams, timelines. If you’ve ever stepped up mid-project or thrived during a company restructure, that’s your cue. Mention it. Think: “Adapted quickly to remote work, coordinating virtual launches across 3 time zones.” A Fast Company piece calls adaptability one of the top traits to future-proof your career.

    5. Collaboration & Teamwork

    No one wants to hire a lone ranger. Even in independent roles, you’ll always need to loop in designers, developers, or managers. But instead of saying you’re “a team player,” reflect that in how you talk about wins. Example: “Collaborated with marketing and product teams to increase campaign reach by 60%.” The Society for Human Resource Management (SHRM) also names collaboration as a key fix for the widening skills gap.

    How to Demonstrate Soft Skills Without Saying Them

    You don’t tell people you have soft skills, you show them. Anyone can write “team player” or “critical thinker,” but employers want proof. The best way to showcase soft skills on your resume is through actions and outcomes. That’s where frameworks like the STAR method come in:

    Situation, Task, Action, Result.

    Instead of saying:
    “Strong problem-solving skills”

    Say this:
    “Identified a bottleneck in onboarding process, implemented a new workflow, and cut average employee ramp-up time by 3 weeks.”

    This approach helps recruiters visualize your capabilities, how you think, how you act, and what changes you’ve driven.

    LiveCareer recommends pairing soft skills with quantifiable impact. For example:

    • “Mediated conflicts between departments, resulting in a 25% boost in inter-team efficiency”
    • “Adapted to sudden software migration, training 15 teammates and maintaining 100% project delivery rate”

    And don’t sleep on skills-based resumes, they’re built around experiences and traits that show value, especially when you’re switching roles or industries.

    Where to Weave in Soft Skills on Your Resume

    Now you know how to talk about your soft skills, let’s talk where to put them.

    Resume Summary or Profile

    This is your 3–4 line elevator pitch. Drop a key soft skill in here—but only if it’s tailored to the job ad. Tools like Jobscan help you match your resume to job descriptions by analyzing the right mix of keywords, skills, and tone.
    Example:

    “Creative project manager with 5+ years leading cross-functional teams and delivering scalable solutions in fast-paced environments.”

    Work Experience Bullet Points

    Don’t list your tasks, list your wins. Turn soft skills into a story of impact.
    Example:

    “Built and led a new content team, boosting quarterly engagement by 80% across social platforms.”

    Key Achievements Section

    Have a space on your resume to shine? Use it. This is the perfect spot to slide in results-driven soft skills.
    Example:

    “Recognized for leadership excellence—mentored 4 interns into full-time roles.”

    Certifications & Volunteering

    Sometimes soft skills show up outside your 9–5. If you’ve led workshops, volunteered, or taken relevant courses on communication, leadership, or conflict resolution, Coursera and edX badges can strengthen your case.

    Final Touches — Avoiding Buzzwords & Clichés

    There are some phrases in your resume that need to retire. Now.

    Overused soft skill phrases to avoid:

    • “Excellent communication skills”
    • “Hard worker”
    • “Team player”
    • “Detail-oriented”
    • “Go-getter”
    • “Fast learner”
    • “Works well under pressure”

    They don’t say much, and everyone uses them.

    Try this instead:

    • “Presented project roadmap to senior stakeholders, securing buy-in for a $50k budget”
    • “Handled high-stress deadlines during product launch, coordinating with 5 vendors and ensuring 100% on-time delivery”
    • “Known for clear, concise copy that improved email open rates by 35%”

    If you’re not sure whether your phrasing hits the mark, run your resume through Resumeworded’s soft skill checker for actionable feedback.

    And don’t forget, your resume doesn’t stand alone. Back up your claims on your LinkedIn profile, portfolio, or even in your cover letter, like this smart example from The Muse.

    Make Your Soft Skills Feel Like Hard Proof

    Your soft skills are not fluff, they’re your X-factor. But to make them work for you, they have to be visible, strategic, and real.

    Here’s the formula:

    • Know what soft skills matter in your target role
    • Show them through results, not buzzwords
    • Place them strategically across your resume
    • Avoid clichés like “great communicator” unless you’re backing it with evidence
    • Sync your story across your resume, cover letter, and LinkedIn

    Think of your resume like a narrative, not a checklist. Every line should say: “Here’s what I bring, and here’s how it moved the needle.”